Our land is changing. Forest is changing to farmland, farmland is changing to suburbs; cities are growing. Shorelines are shifting; glaciers are melting; and ecosystem boundaries are moving. As human population numbers have been rising, natural resource consumption has been increasing both in our country and elsewhere. We are altering the surface of the Earth on a grand scale. Nobel Prize recipient Paul J. Crutzen has said, “Humans have become a geologic agent comparable to erosion and [volcanic] eruptions…”

Land cover change has effects and consequences at all geographic scales: local, regional, and global. Human changes to the land are enabling our own populations to grow, but they also are affecting the capacity of ecosystems to produce food, maintain fresh water and forests, regulate climate and air quality, and provide other essential functions necessary for life. It is critical for us to understand the changes we are bringing about to the Earth system, and to understand the effects and consequences of those changes for life on our planet.

The first step in understanding change is monitoring, and the second step is analysis. Doing this activity will equip you to do those two steps at an introductory level.

Change in land use and land cover can be detected at the local, regional (landscape), continental, and global scales by sensors on Earth-orbiting satellites. Satellite technology enables us to accurately quantify change at the global scale for the first time in human history. Satellites such as Landsat bring us the big picture. And with observations of Earth from space, we can most easily grasp how events in one place are affected by or affect life in other places. For example, we can observe air pollution traveling from one continent to another.

Landsat satellites have been observing the Earth’s land surface since 1972, providing us with an invaluable record of landscape scale change. For more background about NASA’s Earth observing satellite program, visit these Web sites:

- [NASA Earth Science](https://www.nasa.gov/earthscience)
- [Landsat at NASA](https://earthobservatory.nasa.gov/Features/Landsat)
- [Landsat at USGS](https://landsat.usgs.gov)
Earth-orbiting satellites are causing a revolution in the ways people find out about the health of our planet and how they solve many practical problems. Working with satellite data involves a great deal of challenge, mystery, risk, and fun, and it is above all creative. The job market is growing for people who can integrate data from remote sensing, geographic information systems, sensor networks, and other geospatial technologies, and the market is expected to continue to grow over the next decades. For more about such “geospatial” jobs, go to: http://www.asprs.org/career.

Sensors on satellites give us the regional and global perspectives for where we live and the issues we face, such as the sources of pollution in the air we breathe, how cities are growing, or how coastlines are changing in response to hurricanes and sea level rise. Sensors on NASA satellites collect data about the atmosphere, oceans, ice, biosphere, and land used to make daily global maps of our changing planet. The Landsat series of satellites enables us to see change in the land surface over time. Information from Earth-orbiting satellites must be checked against observations people make on the ground, in order to be sure we are interpreting the satellite data correctly. Such field campaigns are a critical aspect of NASA research. (Photograph courtesy of Don Deering)

The Landsat series of satellites enables us to see change in the land surface over time. The Mississippi River deposits sediments from the central United States into the Gulf of Mexico and thereby builds the Mississippi Birdfoot Delta in Louisiana. Upon reaching the Gulf, the river’s velocity slows, reducing the river’s capacity to carry suspended mud and sand. This sediment is deposited in a fan pattern. Clearly, significant change has occurred in just three decades. Compare a specific part of one image to the same part of an image from a later year to discover some details of this remarkable sequence.